Interactive Formal Verification 4: Advanced Recursion, Induction and Simplification

Tjark Weber
(Slides: Lawrence C Paulson)
Computer Laboratory
University of Cambridge

A Failing Proof by Induction


```
fun itlen :: "'a list => nat => nat" where
    "itlen Nil n = n"
    | "itlen (Cons x xs) n = itlen xs (Suc n)"
    lemma "itlen xs n = size xs + n"
    apply (induct xs)
    apply auto
- oops
-u-:**- DemoList.thy 42% L35 (Isar Utoks Abbrev; Scripting)
    proof (prove): step 2
    goal (1 subgoal):
    1. \xs. itlen xs n= size xs + n # itlen xs (Suc n) = Suc (size xs + n)
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)------------------
```


A Failing Proof by Induction

Generalising the Induction

Generalising:Another Way

```
                                    - DemoList.thy
```



```
fun itlen :: "'a list => nat => nat" where
    "itlen Nil n = n"
| "itlen (Cons x xs) n = itlen xs (Suc n)"
lemma "itlen xs n = size xs + n"
    apply (induct xs arbitrary: n)
- apply auto
    done
-u-:--- DemoList.thy 38% L41 (Isar Utoks Abbrev; Scripting )-------------------
proof (prove): step 1
goal (2 subgoals):
    1. \n. itlen Nil n = size Nil + n
    2. \a xs n.
        (\n. itlen xs n = size xs + n) \Longrightarrow
        itlen (Cons a xs) n = size (Cons a xs) + n
-u-:%%- *goals* Top L1
                Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/lp15/Dropbox/ACS/1 - Introduction/DemoList.thy
```


Generalising:Another Way

Generalising:Another Way

Unusual Recursions

```
|
```


Unusual Recursions

Unusual Recursions

Unusual Recursions

Unusual Recursions

Recursion: Key Points

Recursion: Key Points

- Recursion in one variable, following the structure of a datatype declaration, is called primitive.

Recursion: Key Points

- Recursion in one variable, following the structure of a datatype declaration, is called primitive.
- Recursion in multiple variables, terminating by size considerations, can be handled using fun.
- fun produces a special induction rule.
- fun can handle nested recursion.
- fun also handles pattern matching, which it completes.

Special Induction Rules

Special Induction Rules

- They follow the function's recursion exactly.

Special Induction Rules

- They follow the function's recursion exactly.
- For Ackermann, they reduce $P x y$ to
- $P 0 n$, for arbitrary n
- $P($ Suc $m) 0$ assuming $P m$ 1, for arbitrary m
- $\quad P($ Suc m) (Suc n) assuming $P($ Suc m) n and $P m$ (ack (Suc m) n), for arbitrary m and n

Special Induction Rules

- They follow the function's recursion exactly.
- For Ackermann, they reduce $P x y$ to
- $P 0 n$, for arbitrary n
- $\quad P($ Suc $m) 0$ assuming $P m$ 1, for arbitrary m
- $\quad P($ Suc m) (Suc n) assuming $P($ Suc m) n and $P m$ (ack (Suc m) n), for arbitrary m and n
- Usually they do what you want. Trial and error is tempting, but ultimately you will need to think!

Another Unusual Recursion

Another Unusual Recursion

Another Unusual Recursion

Proof Outline

```
set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)
    set (if x \leq y then x # merge xs (y#ys)
    else y # merge (x#xs) ys) = ...
        =
        (x \leq y -> set(x # merge xs (y#ys)) = ...) &
        (\neg x \leq y -> set(y # merge (x#xs) ys) = ...)
        =
    (x \leq y -> {x} U set(merge xs (y#ys)) = ...) &
    (\neg x \leq y -> {y} U set(merge (x#xs) ys) = ...)
        =
    (x \leq y -> {x} U set xs U set (y # ys) = ...) &
    (\neg x \leq y -> {y} U set (x # xs) U set ys = ...)
```


Proof Outline

```
set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)
```

 set (if \(x \leq y\) then \(x\) \# merge \(x\) (\(y \# y s\))
 else y \# merge (x\#xs) ys) = ...
 =
 \((x \leq y \rightarrow \operatorname{set}(x \#\) merge \(x s(y \# y s))=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow \operatorname{set}(\mathrm{y} \#\) merge \((\mathrm{x} \# \mathrm{xs}) \mathrm{ys})=\ldots\))
 \(=\)
 \((\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U} \operatorname{set}(\) merge \(\mathrm{xs}(\mathrm{y} \# \mathrm{ys}))=\ldots\)) \&
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}\) set(merge (x\#xs) ys) = ...)
 \((\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U}\) set \(\mathrm{xs} U \operatorname{set}(\mathrm{y} \# \mathrm{ys})=\ldots\)) \&
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}\) set (\(\mathrm{x} \# \mathrm{xs}) \mathrm{U}\) set \(\mathrm{ys}=\ldots\)...)

Proof Outline

```
set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)
```

 set (if \(x \leq y\) then \(x\) merge \(x\) (\(y \# y s\))
 else y \# merge (x\#xs) ys)
 =
 \((x \leq y \rightarrow \operatorname{set}(x \#\) merge \(x s(y \# y s))=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow \operatorname{set}(\mathrm{y} \#\) merge \((\mathrm{x} \# \mathrm{xs}) \mathrm{ys})=\ldots\))
 \(=\)
 \((\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U} \operatorname{set}(\) merge \(\mathrm{xs}(\mathrm{y} \# \mathrm{ys}))=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}\) set(merge (x\#xs) ys) = ...)
 \((\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U}\) set \(\mathrm{xs} U \operatorname{set}(\mathrm{y} \# \mathrm{ys})=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}\) set \((\mathrm{x} \# \mathrm{xs}) \mathrm{U}\) set \(\mathrm{ys}=\ldots\))

Proof Outline

```
set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)
```

 set (if \(x \leq y\) then \(x\) merge \(x\) (\(y \# y s\))
 else y \# merge (x\#xs) ys)
 =
 \((x \leq y \rightarrow \operatorname{set}(x \#\) merge \(x s(y \# y s))=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow \operatorname{set}(\mathrm{y} \#\) merge \((\mathrm{x} \# \mathrm{xs}) \mathrm{ys})=\ldots\))
 \(=\)
 \((\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U} \operatorname{set}(\) merge \(\mathrm{xs}(\mathrm{y} \# \mathrm{ys}))=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U} \operatorname{set}(\mathrm{merge}(\mathrm{x} \# \mathrm{xs}) \mathrm{ys})=\ldots\))
 $(\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U}$ set $\mathrm{xs} U \operatorname{set}(\mathrm{y} \# \mathrm{ys})=\ldots) \&$
$(\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}$ set ($\mathrm{x} \# \mathrm{xs}) \mathrm{U}$ set $\mathrm{ys}=\ldots$)

Proof Outline

set (merge (x\#xs) (y\#ys)) = set (x \# xs) U set (y \# ys)

```
set (if x \leq y then x # merge xs (y#ys)
    else y # merge (x#xs) ys) = ...
```

 =
 \((x \leq y \rightarrow \operatorname{set}(x \#\) merge \(x s(y \# y s))=\ldots) \&\)
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow \operatorname{set}(\mathrm{y} \#\) merge \((\mathrm{x} \# \mathrm{xs}) \mathrm{ys})=\ldots\))
 =
 \((\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U}\) set(merge \(\mathrm{xs}(\mathrm{y} \# \mathrm{ys}))=\ldots\)) \&
 \((\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}\) set(merge (x\#xs) ys) = ...)
 =
 $(\mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{x}\} \mathrm{U}$ set $\mathrm{xs} U \operatorname{set}(\mathrm{y} \# \mathrm{ys})=\ldots$) \&
$(\neg \mathrm{x} \leq \mathrm{y} \rightarrow\{\mathrm{y}\} \mathrm{U}$ set ($\mathrm{x} \# \mathrm{xs}) \mathrm{U}$ set $\mathrm{ys}=\ldots$...)

The Case Expression

The Case Expression

- Similar to that found in the functional language ML.

The Case Expression

- Similar to that found in the functional language ML.
- Automatically generated for every datatype.

The Case Expression

- Similar to that found in the functional language ML.
- Automatically generated for every datatype.
- The simplifier can (upon request!) perform casesplits analogous to those for "if".

The Case Expression

- Similar to that found in the functional language ML.
- Automatically generated for every datatype.
- The simplifier can (upon request!) perform casesplits analogous to those for "if".
- Case splits in assumptions (not the conclusion) never happen unless requested.

Case-Splits for Lists

Case-Splits for Lists

```
fun ordered :: "'a list => bool"
where
    "ordered [] = True"
    "ordered [x] = True"
    "ordered (x\#y\#xs) = (x \(x y\) \& ordered (y\#xs))"
```


Case-Splits for Lists

fun ordered :: "'a list => bool"
where
"ordered [] = True"
| "ordered (x\#l) =
(case l of [] => True
| Cons y xs => (x $\mathrm{x} y$ \& ordered $\mathrm{y} \# \mathrm{xs})$))"

Case-Splitting in Action

Case-Splitting in Action

Completing the Proof

Completing the Proof

Completing the Proof

Case Splitting for Lists

Simplification will replace

$P($ case $x s$ of [] => $a \mid$ Cons $h t l=>b h t l)$ by

$$
(x s=[] \rightarrow P a) \wedge(\forall h t l . x s=h \# t l \rightarrow P(b h t l))
$$

Case Splitting for Lists

Simplification will replace

$$
\begin{gathered}
P(\text { case } x s \text { of }[]=>a \mid \text { Cons } h t l=>b h t l) \\
\text { by } \\
(x s=[] \rightarrow P a) \wedge(\forall h t l . x s=h \# t l \rightarrow P(b h t l))
\end{gathered}
$$

- It creates a case for each datatype constructor.

Case Splitting for Lists

Simplification will replace

$$
\begin{gathered}
P(\text { case } x s \text { of }[] \Rightarrow a \mid \text { Cons } h t l=>b h t l) \\
\text { by } \\
(x s=[] \rightarrow P a) \wedge(\forall h t l . x s=h \# t l \rightarrow P(b h t l))
\end{gathered}
$$

- It creates a case for each datatype constructor.
- Here it causes looping if combined with the second rewrite rule for ordered.

Summary

Summary

- Many forms of recursion are available.

Summary

- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.

Summary

- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.
- The "case" operator can often be dealt with using automatic case splitting...

Summary

- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.
- The "case" operator can often be dealt with using automatic case splitting...
- but complex simplifications can run forever!

A Helpful Tip

