Interactive Formal Verification 4: Advanced Recursion, Induction and Simplification

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

```
000
                                  DemoList.thy
00 CO I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🕼 🤤 😔 🚏
fun itlen :: "'a list => nat => nat" where
 "itlen Nil n = n"
"itlen (Cons x xs) n = itlen xs (Suc n)"
lemma "itlen xs n = size xs + n"
  apply (induct xs)
 apply auto
 oops
-u-:**- DemoList.thy 42% L35
                                (Isar Utoks Abbrev; Scripting )------
proof (prove): step 2
goal (1 subgoal):
 1. Axs. itlen xs n = size xs + n \implies itlen xs (Suc n) = Suc (size xs + n)
-u-:%%- *goals*
                                (Isar Proofstate Utoks Abbrev;)-----
                      Top L1
```


Generalising the Induction

Generalising: Another Way

```
000
                                  DemoList.thy
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
fun itlen :: "'a list => nat => nat" where
 "itlen Nil n = n"
"itlen (Cons x xs) n = itlen xs (Suc n)"
lemma "itlen xs n = size xs + n"
apply (induct xs arbitrary: n)
apply auto
  done
-u-:--- DemoList.thy 38% L41
                                 (Isar Utoks Abbrev; Scripting )------
proof (prove): step 1
goal (2 subgoals):
 1. \Lambda n. itlen Nil n = size Nil + n
 2. Aa xs n.
       (\Lambda n. itlen xs n = size xs + n) \implies
       itlen (Cons a xs) n = size (Cons a xs) + n
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----
Wrote /Users/lp15/Dropbox/ACS/1 - Introduction/DemoList.thy
```

Generalising: Another Way

Generalising: Another Way


```
000
                                     Primrec.thy
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
 subsection{* Ackermann's Function *}
fun ack :: "nat => nat => nat" where
  "ack 0 n = Suc n"
 "ack (Suc m) 0 = ack m 1"
 | "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
lemma less_ack2 [iff]: "j < ack i j"</pre>
apply (induct i j rule: ack.induct)
apply auto
-u-:--- Primrec.thy
                         3% L16
                                   (Isar Utoks Abbrev; Scripting )------
proof (prove): step 1
 goal (3 subgoals):
 1. \Lambda n. n < ack 0 n
 2. \Lambda m. 1 < ack m 1 \Rightarrow 0 < ack (Suc m) 0
  3. \mbox{m n. } [n < ack (Suc m) n; ack (Suc m) n < ack m (ack (Suc m) n)]
           \Rightarrow Suc n < ack (Suc m) (Suc n)
                                   (Isar Proofstate Utoks Abbrev;)-----
-u-:%%- *goals*
                        Top L1
Wrote /Users/lp15/.emacs
```


Recursion: Key Points

Recursion: Key Points

• Recursion in one variable, following the structure of a datatype declaration, is called *primitive*.

Recursion: Key Points

- Recursion in one variable, following the structure of a datatype declaration, is called *primitive*.
- Recursion in multiple variables, terminating by size considerations, can be handled using fun.
 - fun produces a special induction rule.
 - fun can handle **nested recursion**.
 - fun also handles *pattern matching*, which it **completes**.

• They follow the function's recursion exactly.

- They follow the function's recursion exactly.
- For Ackermann, they reduce P x y to
 - P 0 n, for arbitrary n
 - P(Suc m) 0 assuming Pm 1, for arbitrary m
 - P(Suc m)(Suc n) assuming P(Suc m) n and Pm(ack(Suc m) n), for arbitrary m and n

- They follow the function's recursion exactly.
- For Ackermann, they reduce P x y to
 - P 0 n, for arbitrary n
 - P(Suc m) 0 assuming Pm 1, for arbitrary m
 - P(Suc m)(Suc n) assuming P(Suc m) n and Pm(ack(Suc m) n), for arbitrary m and n
- **Usually** they do what you want. Trial and error is tempting, but ultimately you will need to think!

Another Unusual Recursion

000 MergeSort.thy 😡 😳 🛣 🔺 🕨 X 🛏 🖀 🔎 🐧 🐖 🍃 🤣 🚏 fun merge :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "merge (x#xs) (y#ys) = (if $x \le y$ then x # merge xs (y#ys) else y # merge (x#xs) ys)" "merge xs [] = xs" "merge [] ys = ys" lemma set_merge[simp]: "set (merge xs ys) = set xs ∪ set ys" apply(induct xs ys rule: merge.induct) apply auto done -u-:--- MergeSort.thy 19% L24 (Isar Utoks Abbrev; Scripting)-----proof (prove): step 1 goal (3 subgoals): 1. $\Lambda x xs y ys$. $[x \le y \implies set (merge xs (y \# ys)) = set xs \cup set (y \# ys);$ $\neg x \le y \implies$ set (merge (x # xs) ys) = set (x # xs) \cup set ys \Rightarrow set (merge (x # xs) (y # ys)) = set (x # xs) \cup set (y # ys) 2. $\Lambda xs.$ set (merge xs []) = set xs \cup set [] 3. $\wedge v$ va. set (merge [] (v # va)) = set [] \cup set (v # va) -u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-Wrote /Users/lp15/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Another Unusual Recursion

recursive calls are 000 MergeSort.thy 😡 😳 🛣 🔺 🕨 🗶 🖂 🖀 🖉 🗲 🗲 guarded by conditions fun merge :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "merge (x#xs) (y#ys) =(if $x \le y$ then x # merge xs (y#ys) else y # merge (x#xs) ys)" "merge xs [] = xs" "merge [] ys = ys" lemma set_merge[simp]: "set (merge xs ys) = set xs ∪ set ys" apply(induct xs ys rule: merge.induct) apply auto done -u-:--- MergeSort.thy 19% L24 (Isar Utoks Abbrev; Scripting)-----proof (prove): step 1 goal (3 subgoals): 1. $\Lambda x xs y ys$. $[x \le y \implies set (merge xs (y \# ys)) = set xs \cup set (y \# ys);$ $\neg x \le y \implies$ set (merge (x # xs) ys) = set (x # xs) \cup set ys \Rightarrow set (merge (x # xs) (y # ys)) = set (x # xs) \cup set (y # ys) 2. $\Lambda xs.$ set (merge xs []) = set xs \cup set [] 3. $\wedge v$ va. set (merge [] (v # va)) = set [] \cup set (v # va) -u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-Wrote /Users/lp15/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Another Unusual Recursion

recursive calls are 000 MergeSort.thy 😡 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🕦 🕼 🤤 😔 guarded by conditions fun merge :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "merge (x#xs) (y#ys) =(if $x \le y$ then x # merge xs (y#ys) else y # merge (x#xs) ys)" "merge xs [] = xs" | "merge □ ys = ys" lemma set_merge[simp]: "set (merge xs ys) = set xs ∪ set ys" apply(induct xs ys rule: merge.induct) apply auto done -u-:--- MergeSort.thy 19% L7 2 induction hypotheses, proof (prove): step 1 guarded by conditions! goal (3 subgoals): 1. ∧x xs y ys. $[x \le y \implies set (merge xs (y \# ys)) = set xs \cup set (y \# ys);$ $\neg x \le y \implies$ set (merge (x # xs) ys) = set (x # xs) \lor set ys] \Rightarrow set (merge (x # xs) (y # ys)) = set (x # xs) \cup set (y # ys) 2. $\Lambda xs.$ set (merge xs []) = set xs \cup set [] 3. $\wedge v$ va. set (merge [] (v # va)) = set [] \cup set (v # va) -u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-Wrote /Users/lp15/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)

set (if $x \le y$ then x # merge xs (y#ys)else y # merge $(x\#xs) ys) = \dots$ $= (x \le y \rightarrow set(x \# merge xs (y\#ys)) = \dots) \&$ $(\neg x \le y \rightarrow set(y \# merge (x\#xs) ys) = \dots)$ $= (x \le y \rightarrow \{x\} \cup set(merge xs (y\#ys)) = \dots) \&$ $(\neg x \le y \rightarrow \{y\} \cup set(merge (x\#xs) ys) = \dots)$ $= (x \le y \rightarrow \{x\} \cup set xs \cup set (y \# ys) = \dots) \&$ $(\neg x \le y \rightarrow \{x\} \cup set xs \cup set (y \# ys) = \dots) \&$ $(\neg x \le y \rightarrow \{y\} \cup set (x \# xs) \cup set ys = \dots) \&$

set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)

set (if $x \le y$ then x # merge xs (y#ys)else y # merge $(x\#xs) ys) = \dots$ $= (x \le y \rightarrow set(x \# merge xs (y\#ys)) = \dots) \&$ $(\neg x \le y \rightarrow set(y \# merge (x\#xs) ys) = \dots)$ $= (x \le y \rightarrow \{x\} \cup set(merge xs (y\#ys)) = \dots) \&$ $(\neg x \le y \rightarrow \{y\} \cup set(merge (x\#xs) ys) = \dots)$ $= (x \le y \rightarrow \{x\} \cup set xs \cup set (y \# ys) = \dots) \&$ $(\neg x \le y \rightarrow \{x\} \cup set xs \cup set (y \# ys) = \dots) \&$ $(\neg x \le y \rightarrow \{y\} \cup set (x \# xs) \cup set ys = \dots) \&$

set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)

set (if
$$x \le y$$
 then $x \#$ merge $xs (y\#ys)$)
else $y \#$ merge $(x\#xs) ys$) = ...)
=
($x \le y \rightarrow set(x \#$ merge $xs (y\#ys)$) = ...) &
($\neg x \le y \rightarrow set(y \#$ merge $(x\#xs) ys$) = ...)
=
($x \le y \rightarrow \{x\}$ U set(merge $xs (y\#ys)$) = ...) &
($\neg x \le y \rightarrow \{y\}$ U set(merge $(x\#xs) ys$) = ...) &
=
($x \le y \rightarrow \{x\}$ U set xs U set $(y \# ys) = ...)$ &
($\neg x \le y \rightarrow \{x\}$ U set xs U set $(y \# ys) = ...)$ &
($\neg x \le y \rightarrow \{y\}$ U set $(x \# xs)$ U set $ys = ...)$

set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)

set (if
$$x \le y$$
 then $x \#$ merge $xs (y\#ys)$)
else $y \#$ merge $(x\#xs) ys$) = ...)
=
($x \le y \rightarrow set(x \# merge xs (y\#ys)) = ...$) &
($\neg x \le y \rightarrow set(y \# merge (x\#xs) ys) = ...$)
=
($x \le y \rightarrow \{x\} \cup set(merge xs (y\#ys)) = ...$) &
($\neg x \le y \rightarrow \{y\} \cup set(merge (x\#xs) ys) = ...$)
=
($x \le y \rightarrow \{y\} \cup set(merge (x\#xs) ys) = ...$) &
($\neg x \le y \rightarrow \{x\} \cup set xs \cup set (y \# ys) = ...$) &
($\neg x \le y \rightarrow \{y\} \cup set (x \# xs) \cup set ys = ...$)

set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)

• Similar to that found in the functional language ML.

- Similar to that found in the functional language ML.
- Automatically generated for every datatype.

- Similar to that found in the functional language ML.
- Automatically generated for every datatype.
- The simplifier can (upon request!) perform casesplits analogous to those for "if".

- Similar to that found in the functional language ML.
- Automatically generated for every datatype.
- The simplifier can (upon request!) perform casesplits analogous to those for "if".
- Case splits in *assumptions* (not the conclusion) never happen unless requested.

Case-Splits for Lists

Case-Splits for Lists

```
fun ordered :: "'a list => bool"
where
    "ordered [] = True"
    "ordered [x] = True"
    "ordered [x] = (x≤y & ordered (y#xs))"
```

Case-Splits for Lists

Case-Splitting in Action

	000	MergeSort.thy	\bigcirc
	\odot \odot	▲ ► 포 ⋈ 🖀 🔎 🗊 🐖 🖨 😵 🚏	
	apply (i	dered_merge [simp]: "ordered (merge xs ys) = (ordered xs & ordered ys)" nduct xs ys rule: merge.induct)	Ô
	apply sin	mp_all uto split: list.split	×
		MergeSort.thy 52% L27 (Isar Utoks Abbrev; Scripting)	
	1. ∧x x	subgoal): ks y ys. k ≤ y ⇒	1
		ordered (merge xs (y # ys)) = (ordered xs ^	
Help! Look at a		.(case ys of [] ⇒ True ya # xs ⇒ y ≤ ya ^ ordered (ya # xs))); ¬ x ≤ y ⇒ ordered (merge (x # xs) ys) =	
the case-splits		{(case xs of [] ⇒ True y # xs ⇒ x ≤ y ^ ordered (y # xs)) ^ ordered ys)] ⇒ (x ≤ y →	
		★(case merge xs (y # ys) of [] ⇒ True	
		$ y \# xs \Rightarrow x \le y \land \text{ ordered } (y \# xs)) =$	
		((case xs of [] ⇒ True y # xs ⇒ x ≤ y ∧ ordered (y # xs)) ∧ (case ys of [] ⇒ True	
		ya # xs ⇒ y ≤ ya ^ ordered (ya # xs)))) ^	
		$(\neg x \leq y \rightarrow (x \# x_5) x_5 \text{ of } \Box \Rightarrow True$	
		<pre>(case merge (x # xs) ys of [] ⇒ True</pre>	
		<pre>((case xs of □ ⇒ True y # xs ⇒ x ≤ y ^ ordered (y # xs)) ^ (case ys of □ ⇒ True ya # xs ⇒ y ≤ ya ^ ordered (ya # xs))))</pre>	
		goals 2% L4 (Isar Proofstate Utoks Abbrev;)	
	Wrote /U	sers/lp15/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy	1

Case-Splitting in Action

Completing the Proof

○ ○ ○ ▲ MergeSort.thy	\bigcirc
😡 00 🗶 🔺 🕨 🗶 🖂 🖀 🖉 🔍 😨	
<pre>lemma ordered_merge [simp]: "ordered (merge xs ys) = (ordered xs & ordered apply (induct xs ys rule: merge.induct) apply simp_all apply (auto split: list.split</pre>	ys)"
-u-: MergeSort.thy 54% L28 (Isar Utoks Abbrev; Scripting)	
proof (prove): step 3	\cap
goal: No subgoals!	
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)	

Completing the Proof

Completing the Proof

Case Splitting for Lists

Simplification will replace

 $P (\text{case } xs \text{ of } [] \Rightarrow a | \text{ Cons } h \ tl \Rightarrow b \ h \ tl)$ by $(xs = [] \rightarrow P \ a) \land (\forall h \ tl. \ xs = h \ \# \ tl \rightarrow P \ (b \ h \ tl))$

Case Splitting for Lists

Simplification will replace

 $P (\text{case } xs \text{ of } [] \Rightarrow a | \text{ Cons } h \ tl \Rightarrow b \ h \ tl)$ by $(xs = [] \rightarrow P \ a) \land (\forall h \ tl. \ xs = h \ \# \ tl \rightarrow P \ (b \ h \ tl))$

• It creates a case for each datatype constructor.

Case Splitting for Lists

Simplification will replace

 $P (\text{case } xs \text{ of } [] \Rightarrow a | \text{ Cons } h \ tl \Rightarrow b \ h \ tl)$ by $(xs = [] \rightarrow P \ a) \land (\forall h \ tl. \ xs = h \ \# \ tl \rightarrow P \ (b \ h \ tl))$

- It creates a case for each datatype constructor.
- Here it causes looping if combined with the second rewrite rule for ordered.

• Many forms of recursion are available.

- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.

- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.
- The "case" operator can often be dealt with using automatic case splitting...

- Many forms of recursion are available.
- The supplied induction rule often leads to simple proofs.
- The "case" operator can often be dealt with using automatic case splitting...
- but complex simplifications can run forever!

A Helpful Tip

